

University of California, Berkeley Department of Nuclear Engineering

NE-150 Nuclear Reactor Theory

Spring 2018 Prof. Jasmina Vujic

SCHEDULE (Preliminary) LE – Lewis Elmer; LB – Lamarsh&Barata;

Lec ture	Date	Topic	NOTES
1	Jan 16	Introduction. Review of the current status in nuclear energy in the world.	Notes 1 LB Ch. 4
2	Jan 18	Review of historical development. Review of fundamental concepts. Atomic and nuclear structure and excited states. Atomic mass unit, number and mass density. Abundance and enrichment. Atom and weight percent.	Notes 2 LE Ch.1 LB Ch.2
3	Jan 23	Nuclear models. Binding energy. Fission and fusion processes. Energy release. Radioactive decay modes and decay chains. Simple reactor power formula.	Notes 3 LE Ch.1 LB Ch.2
4	Jan 25	Basic nuclear reactions; Neutron cross sections; Formation of compound nucleus; Potential scattering; Kinematics of elastic scattering;	Notes 4 LE Ch.2 LB Ch.3
5	Jan 30	Neutron attenuation. Mean free path. Collision frequency. Neutron activation. Discussion of various neutron spectra as a function of neutron energy.	Notes 5 LE Ch.2 LB Ch.3
6	Feb 1	Radiative capture. Resonances. Bright-Wigner formula. Doppler broadening. 1/v absorption cross sections. Polyenergetic neutrons. Reaction rates.	Notes 6 LE Ch.2 LB Ch.3
7	Feb 6	Nuclear fission reaction, fissile, fissionable, fertile nuclides, prompt and delayed neutrons, fission yields, nu-bar. Fission spectrum. Prompt and delayed neutrons. Delayed neutron precursors. Delayed neutron groups. Examples of fission cross sections.	Notes 7 LE Ch.3 LB Ch.3
8	Feb 8	Neutron population distribution in energy. Fast neutrons fission spectra. Thermal neutrons Maxwell-Boltzmann spectra. Average and most probable neutron energies. Neutron spectra in fast and thermal reactors. Energy-averaged cross sections and reaction rates.	Notes 8 LE Ch.3 LB Ch.2
9	Feb 13	Elastic scattering mechanics, energy loss, average logarithmic energy decrement, effect of inelastic scattering, collision and slowing down densities, and resonance absorption evaluation. Average scattering cosine. Slowing down of neutrons, neutron letargy, neutron moderators, neutron upscattering. Slowing-down equations.	Notes 9 LE Ch.2
10	Feb 15	Chain reaction. Neutron multiplication factor. Neutron cycle in nuclear reactor. Four and six factor formula.	Notes 10 LE Ch.4 LB Ch.4,6
	Feb 20	Criticality considerations. Conversion and breeding. Neutron economy in thermal and fast reactors.	Notes 11 LE Ch.4
11	Feb 22	MIDTERM I	LE Ch. 1-3

12	Feb 27	Introduction to Monte Carlo Method	Notes 12
		Introduction to MCNP. MCNP Tutorial.	
13	March 1	On-Line MCNP Manual	Notes 13
15		Running MCNP on DECF Clusters	
		SERPENT Tutorial. Running Serpent on DECF Cluster.	
14	March 6	Simple reactor kinetics. Neutron balance equation. Infinite medium non-	Notes 14
		multiplying systems. Infinite medium multiplying systems. Finite	LE Ch.5
		multiplying systems. Multiplying systems behavior in time. Critical,	LB Ch. /
15	March 9	Supercritical and subcritical systems.	Notos 15
15	March 8	Delayed neutron kinetics. Point reactor kinetics equations. In-nour	Notes 15
		naried Prompt jump approximation. Red drop Source jerk. Red	LE CII.3
		oscillations	LD CII. /
16	March 13	Spatial neutron balance Diffusion approximation equation of	Notes 16
10		continuity, derivation of Fick's law with transport correction. Solutions	LE Ch.6
		of 1D forms of Neutron Diffusion Equation. Examples of the 1D	LB Ch.5
		solutions: non-multiplying systems in plane geometry. Boundary	
		conditions, interface conditions.	
17	March 15	Diffusion equation in1D spherical geometry, boundary conditions.	Notes 17
		Diffusion equation in 1D cylindrical geometry, boundary conditions.	LE Ch.6
		Diffusion approximation validity. Review and examples.	LB Ch.5
	March 20	Partial currents in diffusion approximation. One-speed diffusion	Notes 18
		equation in multiplying media. Time-dependent diffusion equation.	Textbook
		Solution of the time-dependent diffusion in multiplying media.	Cn. 6
		buckling	
	March 22	Criticality condition Concept of k-eigenvalue. Slab reactor	Notes 19
		Fundamental flux mode. Criticality conditions for other reactor shapes:	LE Ch.7
		Infinite and finite cylinders, sphere, rectangular parallelepiped.	LB Ch.6
		Maximum-to-average flux. Neutron leakage, diffusion length and	
		mitigation length.	
18	March 27	SPRING BREAK	
19	March 29	SPRING BREAK	
		Reflected 1D geometries. Criticality conditions for reflected cores.	Notes 20
20	April 3	Reflector savings. More on geometric and material bucklings. Reactor	LE Ch.7
	r -	power and flux distributions. Leakage and reactor design. Reflector	LB Ch.6
21	A	savings and flux flattening.	Net an 21
21	April 5	diffusion equations. Definition of group quantities. Various models for	I D Ch 5
		scattering and sources in the multigroup diffusion equation	LB Ch 6
	April 10	MIDTERM II	Notes 10-
			18
			LE Ch. 4-6
			LB Ch. 4, 5
		Two group approximation for the diffusion equation. Criticality	Notes 22
22	April 12	condition. One group modified diffusion equation. Examples.	LE Ch.9
			LB Ch.5
25	April 17	Reactivity feedback. Reactivity and temperature coefficients. Composite	Notes 23
		coefficients, power coefficient. Excess reactivity and shutdown margin.	LE Ch.10
		Reactor transients.	LB Ch.7
26	April 10	Fission product huildup and decay. Vanan and comparium poissing	Notec 24
20		Startup of a clean reactor core. Equilibrium concentrations. Peactor	$\frac{100005}{1} \frac{24}{1}$
		startup or a clean reactor core. Equinorium concentrations. Reactor	LE CILIU

		shutdown and startup. Fuel Depletion. Fuel burnup equations. Fissionable nuclide concentrations, burnable poison. Fission product and actinide inventories. Steady-state Bateman equations.	LB Ch.7
27	April 24	Reactivity Control. Movable control rods, soluble poison, burnable poison. Spent nuclear fuel. Separation and reprocessing. Open and closed fuel cycles. Review of some advanced reactor designs.	Notes 25 LB Ch.7
28	April 26	Review of important concepts.	-
	May 7-	FINAL EXAMINATIONS	
	May II		